Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9526, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664467

RESUMEN

The continued interest in 2D carbon allotropes stems from their unique structural and electronic characteristics, which are crucial for diverse applications. This work theoretically introduces PHOTH-Graphene (PHOTH-G), a novel 2D planar carbon allotrope formed by 4-5-6-7-8 carbon rings. PHOTH-G emerges as a narrow band gap semiconducting material with low formation energy, demonstrating good stability under thermal and mechanical conditions. This material has slight mechanical anisotropy with Young modulus and Poisson ratios varying between 7.08-167.8 GPa and 0.21-0.96. PHOTH-G presents optical activity restricted to the visible range. Li atoms adsorbed on its surface have a migration barrier averaging 0.38 eV.

2.
Sci Rep ; 14(1): 2510, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291070

RESUMEN

Computational materials research is vital in improving our understanding of various class of materials and their properties, contributing valuable information that helps predict innovative structures and complement empirical investigations. In this context, DHQ-graphene recently emerged as a stable two-dimensional carbon allotrope composed of decagonal, hexagonal, and quadrilateral carbon rings. Here, we employ density functional theory calculations to investigate the mechanical, electronic, and optical features of its boron nitride counterpart (DHQ-BN). Our findings reveal an insulating band gap of 5.11 eV at the HSE06 level and good structural stability supported by phonon calculations and ab initio molecular dynamics simulations. Moreover, DHQ-BN exhibits strong ultraviolet (UV) activity, suggesting its potential as a highly efficient UV light absorber. Its mechanical properties, including Young's modulus (230 GPa) and Poisson's ratio (0.7), provide insight into its mechanical resilience and structural stability.

3.
J Mol Model ; 29(7): 215, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37347316

RESUMEN

CONTEXT: Recently, a new 2D carbon allotrope named biphenylene network (BPN) was experimentally realized. Here, we use density functional theory (DFT) calculations to study its boron nitride analogue sheet's structural, electronic, and optical properties (BN-BPN). Results suggest that BN-BPN has good structural and dynamic stabilities. It also has a direct bandgap of 4.5 eV and significant optical activity in the ultraviolet range. BN-BPN Young's modulus varies between 234.4[Formula: see text]273.2 GPa depending on the strain direction. METHODS: Density functional theory (DFT) simulations for the electronic and optical properties of BN-BPN were performed using the CASTEP package within the Biovia Materials Studio software. The exchange and correlation functions are treated within the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) and the hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). For convenience, the mechanical properties were carried out using the DFT approach implemented in the SIESTA code, also within the scope of the GGA/PBE method. We used the double-zeta plus polarization (DZP) for the basis set in these cases. Moreover, the norm-conserving Troullier-Martins pseudopotential was employed to describe the core electrons.


Asunto(s)
Carbono , Electrónica , Módulo de Elasticidad , Electrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...